Table of Contents

Introduction .. 3
Operations (Network) ... 4
Developments in 2005 .. 8
Future Plans ... 8
NWT Air Quality Standards ... 9
Yellowknife Air Quality ... 10
 - Total Suspended Particulate (TSP) ... 10
 - Fine Particulate (PM 2.5) .. 12
 - Arsenic ... 14
 - Lead ... 15
 - Sulphur Dioxide (SO 2) ... 16
 - Ground Level Ozone (O 3) .. 18
 - Nitrogen Oxides (NO x) .. 19
 - Carbon Monoxide (CO) ... 20
Inuvik Air Quality .. 21
 - Hydrogen Sulphide (H 2 S) .. 21
 - Sulphur Dioxide (SO 2) ... 21
 - Nitrogen Oxides (NO x) .. 21
 - Fine Particulate (PM 2.5) .. 22
 - Ground Level Ozone (O 3) .. 23
Fort Liard Air Quality ... 24
 - Hydrogen Sulphide (H 2 S) .. 24
 - Sulphur Dioxide (SO 2) ... 24
 - Fine Particulate (PM 2.5) .. 25
 - Nitrogen Oxides (NO x) .. 26
Norman Wells Air Quality ... 27
 - Hydrogen Sulphide (H 2 S) .. 27
 - Sulphur Dioxide (SO 2) ... 27
 - Nitrogen Oxides (NO x) .. 28
 - Fine Particulate (PM 2.5) .. 28
 - Ground Level Ozone (O 3) .. 29
Snare Rapids Acid Deposition .. 30
Daring Lake Seasonal Particulate .. 30
Appendices .. 31
 - Appendix A: Monitoring History .. 32
 - Appendix B: Air Pollutants .. 33
 - Total Suspended Particulate (TSP) ... 33
 - Arsenic .. 33
 - Particulate Matter (PM 2.5) and (PM 10) .. 34
 - Sulphur Dioxide (SO 2) ... 34
 - Hydrogen Sulphide (H 2 S) .. 35
 - Nitrogen Oxides (NO x) .. 35
 - Ground Level Ozone (O 3) .. 36
 - Carbon Monoxide (CO) ... 36
 - Acid Deposition .. 36

Northwest Territories Air Quality Report 2004
INTRODUCTION

The Environmental Protection Division (EPD) of the Department of Environment and Natural Resources (ENR) monitors air quality in the Northwest Territories. ENR maintains and operates the NWT Ambient Air Quality Monitoring Network, consisting of four monitoring stations located in Yellowknife, Fort Liard, Norman Wells and Inuvik. Each station is capable of continuously sampling and analysing a variety of air pollutants and meteorological conditions.

ENR also monitors acid precipitation at Snare Rapids in cooperation with the Canadian Air and Precipitation Monitoring Network (CAPMoN) and conducts seasonal particulate sampling at Daring Lake.

The 2005 Annual Air Quality Report summarizes the air quality information collected in 2005, along with some discussion of trends. The report also provides information on network operations, the air pollutants monitored and the air quality standards used in assessing the monitoring results.

After reading this report, if you have questions or require further information you can contact:

Environmental Protection Division
Department of Environment and Natural Resources
Government of the Northwest Territories
P.O. BOX 1320
Yellowknife, NT X1A 2L9

Telephone: (867) 873-7654
Facsimile: (867) 873-0221

This report is also available on the Internet at www.enr.gov.nt.ca/eps/environ.htm.
The NWT Air Quality Monitoring Network consists of four permanent monitoring stations located in Yellowknife, Inuvik, Fort Liard and Norman Wells. The stations are climate controlled trailers and include state of the art monitoring equipment capable of continuously sampling and analysing a variety of air pollutants and meteorological conditions. Pollutants monitored vary by station but include sulphur dioxide (SO₂), hydrogen sulphide (H₂S), fine particulate (PM₂.₅), ground level ozone (O₃), carbon monoxide (CO) and nitrogen oxides (NOₓ) as well as wind speed, wind direction and temperature. Table 1 shows the breakdown of the NWT air monitoring network by substances and meteorological parameters monitored at each station.
Using a sophisticated data acquisition system (DAS) and communications software, data from each station is automatically transmitted every hour via telephone line and government intranet to ENR headquarters in Yellowknife, allowing almost real time review of community air quality by ENR staff. The data also undergoes a series of ‘on the fly’ validity checks before being archived by ENR’s data management, analysis and reporting system.

The Yellowknife station adjacent to Sir John Franklin High School is part of a larger national network that monitors the common or criteria air pollutants in urban centres across Canada. The National Air Pollution Surveillance (NAPS) Network is a joint federal/provincial/territorial program, incorporating 152 stations located in 55 cities, that monitor the same particulate and gaseous substances as those sampled in Yellowknife. Yellowknife data along with data from other cities is summarized and assessed, with results published in the NAPS annual data reports.

The NAPS Network has a stringent quality assurance/quality control (QA/QC) program that ensures Canada-wide data is comparable. Participation in the NAPS...
program requires ENR to follow these QA/QC procedures at the Yellowknife site, and ENR, in turn, applies these procedures at the other stations.

A second NAPS station operates in downtown Yellowknife, at the Post Office monitoring total suspended particulate (TSP – ‘dust’) and the finer particulate portions (PM$_{2.5}$) and (PM$_{10}$).

The Fort Liard, Norman Wells and Inuvik stations are Territorial stations that were set up in response to increasing resource development activity in the NWT and the potential for the associated emissions to affect air quality. The primary objective of these stations is to establish baseline levels of SO$_2$, H$_2$S, NO$_x$, and O$_3$ ahead of development, as well as track the trends and cumulative impacts from source emissions should they occur.

ENR, with assistance from NWT Power Corporation staff, operates an acid precipitation collector at the Snare Rapids hydro-electric site. Daily rain and snow samples are collected and forwarded to the Canadian Air and Precipitation Monitoring Network (CAPMoN) for analysis. CAPMoN is a non-urban monitoring network with 28 measurement sites in Canada and one in the United States. Unlike NAPS, CAPMoN locates sites to limit the effect of anthropogenic sources. Most sites are remote and data is considered representative of background values.

ENR collects fine particulate data at the Daring Lake Tundra Ecosystem Research Station during the summer to establish typical background concentrations in the NWT. This research station is part of a circumpolar initiative called the Polar Continental Shelf Project and is designed as a research facility to conduct long-term research and monitoring of the tundra ecosystem.

Table 2 shows all of the various government affiliations involved with all of the monitoring stations.
<table>
<thead>
<tr>
<th>Partnership/Contract</th>
<th>Stations</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment & Natural Resources – Environmental Protection Division</td>
<td>Yellowknife</td>
<td>National Air Pollution Surveillance Environment Canada Environnement Canada</td>
</tr>
<tr>
<td></td>
<td>Inuvik</td>
<td>Northwest Territories stations</td>
</tr>
<tr>
<td></td>
<td>Fort Liard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norman Wells</td>
<td></td>
</tr>
<tr>
<td>NWT Power Corporation</td>
<td>Snare Rapids</td>
<td>Canadian Air and Precipitation Monitoring Environment Canada Environnement Canada</td>
</tr>
<tr>
<td>NWT Tundra Ecological Research Station</td>
<td>Daring Lake</td>
<td></td>
</tr>
</tbody>
</table>

Air quality monitoring in the NWT has evolved over time, beginning with a single TSP monitor in Yellowknife back in 1974, and progressing through various monitoring locations and equipment to reach the current stage of development. Appendix A traces the history of air quality monitoring in the NWT.
DEVELOPMENTS IN 2005

In 2005, the upgrading of the NWT air quality monitoring network continued with the addition of monitoring equipment as follows:

- Fort Liard - NO\textsubscript{x} analyzer was installed in March and an O\textsubscript{3} analyzer was purchased which will be installed in 2006.
- Norman Wells - O\textsubscript{3} and NO\textsubscript{x} analyzers were installed in April.
- Inuvik - O\textsubscript{3} analyzer purchased by Environment Canada (Yellowknife office) was installed in April.

Due to years of significant data loss caused by extreme cold, the Partisol Dichotomous fine particulate sampler at the Post office station in Yellowknife was relocated indoors at the Sir John Franklin air monitoring trailer.

The Post Office station was officially closed after the last TSP sample ran on December 6th, 2005.

ENR is constructing an Air Quality web site. The web site will link with the data management, analysis and reporting system to provide public access to air quality data for each monitoring location. Access to archived data will also be available by querying the database using web-based tools.

FUTURE PLANS

Particulate Matter (PM\textsubscript{10}) continuous samplers will be added to the Yellowknife and Inuvik stations in 2006, as well as an O\textsubscript{3} analyzer in Fort Liard. Work will continue on the Air Quality web site so that it can be officially released in the spring of 2006. The scope of the work includes database related modifications as well as web design improvements. The ultimate goal is to produce a web site that will provide useful and meaningful information to a broad range of users.
The Government of the NWT has adopted a number of concentration limits for protection of ambient (outdoor) air quality in the NWT. These limits apply to selected pollutants and are contained in the Guideline for Ambient Air Quality Standards in the Northwest Territories, established under the *NWT Environmental Protection Act*. They are summarized in Table 3 below.

The NWT standards are used in the assessment of air quality monitoring data as well as determining the acceptability of emissions from proposed and existing developments. Where NWT standards are not available for a particular pollutant, the Canadian National Ambient Air Quality Objectives (national standards) or limits established in other jurisdictions are used.

<table>
<thead>
<tr>
<th>Parameter and Standard</th>
<th>Concentration (μg/m³)*</th>
<th>Concentration (ppbv)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphur Dioxide (SO₂)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour average</td>
<td>450</td>
<td>172</td>
</tr>
<tr>
<td>24-hour average</td>
<td>150</td>
<td>57</td>
</tr>
<tr>
<td>Annual arithmetic mean</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>Ground Level Ozone (O₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-hour running average</td>
<td>127</td>
<td>65</td>
</tr>
<tr>
<td>Total Suspended Particulate (TSP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hour average</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Annual geometric mean</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Fine Particulate Matter (PM₂.₅)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hour average</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

* Micrograms per cubic metre
** Parts per billion by volume

The Guideline for Ambient Air Quality Standards in the Northwest Territories provides additional information on the application of the NWT standards and the pollutants of concern. For additional information on air pollutants see Appendix B.
ENR, in partnership with the Canadian National Air Pollution Surveillance Program (NAPS), operates two air quality monitoring stations in Yellowknife.

The main station is located at the Sir John Franklin High School and continuously monitors all criteria air pollutants O₃, SO₂, NOₓ, CO, TSP and fine particulate (PM₂.₅). The station also monitors wind speed, wind direction, and temperature which greatly assist in identifying possible sources of unusual or elevated readings.

A second station is located on the roof of the Post Office and consists of a TSP (dust) High Volume sampler (Hi-Vol) and a Partisol Dichotomous fine particulate sampler. This site was closed at the end of 2005 and the equipment moved to the Sir John Franklin High School station. For most of the past 2 years, Hi-vol data has been collected concurrently at both sites to check comparability of readings between the sites.

The air quality monitoring results from both stations are discussed in the following sections.

TOTAL SUSPENDED PARTICULATE (TSP)

Yellowknife’s greatest source of TSP is dust from roads, especially in the spring when the snow cover disappears and exposes winter sand and gravel applications on city streets to the effects of wind and vehicle disturbance. Forest fires, mining activities and combustion products from vehicles, heating and electricity generation also raise TSP levels.

Every six days on a predetermined schedule, TSP samples are collected over a 24-hour period (midnight to midnight) using Hi-Vol air samplers located at the Post Office and Sir John Franklin High School. Each sampler draws a measured volume of air through a filter to collect the suspended particulate. The filters are sent to Environment Canada’s NAPS laboratory in Ottawa for analysis. TSP is measured as the weight of the particles collected on the filter divided by the volume of air drawn through the filter. Results are expressed in micrograms of particulate per cubic metre of air (µg/m³). Arsenic levels are also determined in the samples collected at the Post Office. Lead analysis has been phased out due to the consistently low readings (majority below the analytical detection limit) over the last few years.
Fifty-seven Hi-Vol air samples were collected during 2005 from both samplers. Table 4 summarizes the 2004 and 2005 TSP results including the annual average (geometric mean) as well as the 2004 arsenic results. The 2005 arsenic data was not available for the release of this report due to analytical delays at the NAPS laboratory.

The bars in Figure 1 track annual average TSP levels in Yellowknife (Post Office station) over the last decade. In 2005, the annual average was 24 µg/m³. This is the lowest annual level ever recorded at this station. This level is well below the NWT annual standard of 60 µg/m³.

The line in Figure 1 shows the number of times during the year that the NWT 24-hour standard (120 µg/m³) was exceeded. There were 2 exceedances in 2005, one less than in 2004.

Since the early 1990's, dust conditions in Yellowknife have improved - largely due to the City of Yellowknife's efforts to clean roads throughout the spring and summer as well as ongoing paving of gravelled areas. Overall there is a downward trend in annual TSP levels. It is likely that the slight increases seen in the 2003 and 2004 data simply reflect the typical annual variations due to weather conditions and the intermittent sampling schedule.

Figure 2 tracks the average TSP level for each month for the last five years and clearly demonstrates the effects of springtime dust events. 2005 monthly averages followed the usual pattern with high TSP levels in April and May.

Table 4:

<table>
<thead>
<tr>
<th></th>
<th>Post Office</th>
<th>Sir John Franklin</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/m³</td>
<td>2004</td>
<td>2004</td>
</tr>
<tr>
<td>Highest (24-hr.)</td>
<td>TSP</td>
<td>Arsenic</td>
</tr>
<tr>
<td>188</td>
<td>0.04</td>
<td>206</td>
</tr>
<tr>
<td>Lowest (24-hr.)</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Annual Average</td>
<td>31</td>
<td>.01</td>
</tr>
</tbody>
</table>

Northwest Territories Air Quality Report 2005
In 2005 the Hi-Vol sampler located at Sir John Franklin site also collected 57 samples. The annual average was 20µg/m³ and there were two exceedances of the NWT 24-hour standard – similar to the results from the Post office station. The Post Office station was closed at the end of 2005 and TSP data will be collected from the Sir John Franklin station in 2006 and future years.

FINE PARTICULATE (PM$_{2.5}$)

ENR uses two methods of sampling PM$_{2.5}$ in Yellowknife – a filter-based Partisol Dichotomous sampler and a Beta Attenuation Mass Monitor (BAM). The BAM methodology provides continuous, almost real-time (hourly) analysis of particulate concentrations, while the Partisol samples on a 24-hour basis every 6 days. The Partisol sampler simultaneously collects both the 2.5µm and less, and the 2.5 to 10µm particulate size fractions on a filter media. The filters require laboratory analysis to determine particulate concentrations and, unlike the BAM, do not provide timely information for real time air quality assessment. However, the filters can also be analysed for a whole suite of additional parameters including metals. The Partisol compliments the BAM in that particle identification can be determined which provides more in depth information about fine particulate.

Three BAM readings at the Sir John Franklin station in 2005 exceeded the NWT 24-hour standard for PM$_{2.5}$ (30µg/m³). All 3 exceedances were influenced by forest fire
smoke. The maximum 24-hour PM$_{2.5}$ value occurred on August 22 and coincided with forest fires burning in Alaska. Review and analysis of the results and wind information from the Sir John Franklin station and other meteorological stations clearly indicated the effects of fine particulate transport predominantly from the Alaskan forest fires. Despite the very high concentrations registered at the Sir John Franklin monitoring station during forest fire event, the annual average for PM$_{2.5}$ remained low, consistent with the range measured since monitoring began in 1999.

Figure 3 shows the monthly averages and daily maximums measured at the Sir John Franklin station in 2005. The highest daily maximum concentration was 107µg/m3. The highest hourly concentration recorded was 207µg/m3. Forest fires burning in August undoubtedly had the most significant impact on PM$_{2.5}$ levels across the NWT in 2005 as was the case in 2004.

Figure 4 summarizes the PM$_{2.5}$ BAM data over the last three years, showing the overall mean and overall daily maximum for each month. Overall means for each month are low and very consistent ranging from 3-6µg/m3, with an increase in July which reflects the influence of forest fire events. The July and August maximums were a direct result of smoke from forest fires. If the forest fire events are ignored, then the daily maximums decline considerably, falling within a range of 5-9µg/m3. Based on the results gathered so far, it appears that PM$_{2.5}$ concentrations in Yellowknife are consistently low, with the greatest short-term influences being smoke from forest fires.
ARSENIC

TSP filters are analysed to determine arsenic concentrations. Unfortunately, analytical delays at the NAPS laboratory often result in a 1-year time lag between arsenic data and the annual air quality report. Consequently, arsenic data for 2005 is not available for inclusion in this Report, although the 2004 data that was unavailable last year is. Analyses of the 2005 TSP filters will likely be completed by the end of June and results will be included in the 2006 Air Quality Report. ENR is discussing the time lag issue with NAPS in an effort to achieve more timely analysis.

Figure 5 summarizes the historical concentrations of arsenic measured in Yellowknife up to 2004. The bars represent annual averages while the line shows the highest total arsenic level measured over a 24-hour period for a given year. It is apparent that arsenic concentrations in Yellowknife have fallen from the historical elevated concentrations in the 1970s and 1980s. No exceedances of the Ontario Guideline have occurred since 1988 and the average arsenic concentration over the last decade is 0.006μg/m3 - below all but the most stringent WHO risk estimate concentration. In recent years, the overall average has decreased further to less than 0.003μg/m3.

Figure 5:

![Graph showing historical arsenic concentrations in Yellowknife](image)

In 2004, only 16 of 59 TSP samples contained detectable arsenic. The maximum 24-hour concentration was 0.04μg/m3 - almost an order of magnitude lower than the Ontario Guideline. The annual average (geometric mean) concentration in 2004 was 0.003μg/m3, considerably lower than all but the most conservative risk estimate concentration provided by the WHO.
Studies in the US show an average arsenic concentration in air of <0.001 - 0.003µg/m³ in remote areas, with concentrations of 0.020 - 0.030µg/m³ in urban areas, while Canadian urban areas range from 0.0005 to 0.017µg/m³ (WHO, 2000). Yellowknife arsenic results over the last decade indicate annual concentrations ranging from 0.002 to 0.015µg/m³ - comparable to concentrations measured in other urban areas. Since 1999, the levels have decreased and the annual average concentrations (0.002-0.004µg/m³) are similar to those in remote areas.

Based on the previous discussion, it appears that concentrations of airborne arsenic in Yellowknife are typical of those found in remote areas and that health risks due to inhalation are minimal.

LEAD

As with arsenic, TSP samples are analysed at the NAPS laboratory to determine lead concentrations. The analysis is subject to the same delays and, therefore, 2004 lead data (not available for last years Report) are presented in this section.

There are no NWT standards for lead. Ontario uses a short-term (24-hour) Standard of 2.0µg/m³, Alberta has a 1-hour Guideline of 1.5µg/m³ and BC has both a short-term (24-hour) Objective of 4.0µg/m³ and a longer-term (annual) Objective of 2.0µg/m³. The WHO recommends an annual limit of 0.5µg/m³.

The 2004 analysis indicated only 23 of 59 samples (39%) containing detectable lead, with a maximum concentration of 0.033µg/m³ and an annual average concentration of 0.005µg/m³ – well below the short and long term limits used in other jurisdictions.

Figure 6 shows the maximum 24-hour and annual lead levels since 1982. The WHO Guidelines indicate that average airborne lead concentrations in non-urban sites in Europe tend to be less than 0.15µg/m³, while urban concentrations range from 0.15µg/m³ to 0.5µg/m³. Lead levels in Yellowknife are well below these values. It is likely that the minor fluctuations in recent years simply represent the annual variation in background lead levels in the Yellowknife area or, more simply, the variation introduced through the intermittent sampling schedule.
As with most communities, levels of lead in Yellowknife air have declined after the phase out of leaded gasoline in 1986. Lead results over the last decade have indicated that the vast majority of samples contain levels that are below the detectable limit (0.003\(\mu g/m^3\)). 2004 results reflect this pattern with 36 of 59 (61%) samples below the detectable limit. Based on these results and discussions with NAPS staff, it was decided that there was no longer a need to analyse for this contaminant beginning in 2005. Consequently, lead will no longer be included in future annual air reports.

SULPHUR DIOXIDE (SO\(_2\))

Continuous monitoring for SO\(_2\) has been conducted in Yellowknife at several locations since 1992. The current analyzer is located in the Sir John Franklin station.

In the past, the largest sources of SO\(_2\) in the Yellowknife area were the gold mine ore roasters, the most recent being Giant Mine. The highest levels of SO\(_2\) in the Yellowknife area were measured downwind from the mine. Since the mine is closed in 1999, only background levels have been recorded.

Figure 7 shows the general trends in SO\(_2\) levels measured in Yellowknife air from 1994 to 2005. The bars track the annual average and the line shows the number of times in each year that the NWT one-hour standard was exceeded. As illustrated by the graph, the number of exceedances has fallen to zero since the closure of Giant Mine in 1999.
Figures 8 and 9 show the 2004 and 2005 monthly averages and highest hourly concentrations. The 2005 data continued the trend of recent years, with no exceedances of the NWT hourly (450μg/m³) and 24-hour (150μg/m³) standards. The annual average was less than 3μg/m³, a level which is well below the NWT (30μg/m³) standard.

The vast majority of the hourly concentrations recorded in 2005 were only background or slightly greater, with a maximum concentration of 14μg/m³. The concentrations reflect naturally occurring
SO₂, usually in the range of 3 to 4μg/m³, and small amounts from the burning of fossil fuels.

GROUND LEVEL OZONE (O₃)

A continuous O₃ analyzer has been operated in Yellowknife since 1998. The current analyzer has been operating at the Sir John Franklin station since February of 2003.

Detectable concentrations of O₃ exist even in remote areas due to naturally occurring sources of the precursor gases such as forest fires and volatile organic compounds (VOC) emissions from trees and the introduction of stratospheric ozone to lower elevations resulting from atmospheric mixing processes. These background concentrations typically are in the range of 40 to 80μg/m³. In large urban areas (and areas downwind), ozone concentrations can be much higher than typical background due to the additional emissions of precursor gases.

Figure 10:

The **Figures** illustrate the typical spring maximum which commonly occurs at remote monitoring stations located in mid to high latitudes in the Northern hemisphere and the source of which is the subject of considerable scientific debate. Typical monthly ozone concentrations at remote sites in Canada range between 40 and 80μg/m³ and Yellowknife concentrations for both years fell below or within this range, indicating that most of the O₃ detected is likely naturally occurring or background.

Figures 10 and 11 show the hourly and 8-hour maximums recorded for 2004 and 2005, together with the monthly averages. Neither the 1-hour national standard nor the 8-hour NWT standard was exceeded in Yellowknife during 2004 or 2005.

Figure 11:
NITROGEN OXIDES (NO\textsubscript{x})

The instrumentation provides continuous information on NO, NO\textsubscript{2} and NO\textsubscript{x}. However, the focus is on NO\textsubscript{2} due to the greater health concerns associated with this pollutant and the availability of air quality standards for comparison.

The 2005 results indicated that there were no exceedances of the 1-hour and 24-hour national standards for NO\textsubscript{2}. The maximum one-hour average was 105μg/m3 and the annual average was 8μg/m3.

Figures 12 and 13 show the 2004 and 2005 monthly averages and highest hourly concentrations. Both the highest monthly averages and the highest hourly concentrations occurred during the winter months. This is likely caused by increased emissions from fuel combustion for residential and commercial heating, and idling vehicles, as well as short-term “rush hour” traffic influences. The effects of these emissions on winter-time air quality can be increased when combined with stagnant meteorological conditions. Cold, calm days can result in an atmospheric situation where the normal decrease in air temperature with elevation is reversed and a zone of colder air is present at ground level. This zone of colder air and the lack of wind act to restrict dispersion and trap pollutants close to the ground.
2005 was the first year that a full set of data was collected for CO. As expected, given the absence of heavy traffic volumes in Yellowknife, the levels were extremely low – well below the federal standards. The maximum 1-hour average was 2.3 mg/m3 and the annual average was 0.1 mg/m3. Figure 14 shows the 2005 monthly averages and highest hourly concentrations.
INUVIK AIR QUALITY

The focus of the monitoring station in Inuvik is to gather baseline community air quality information and to track trends and cumulative effects of pollutant sources over time.

In addition to S0₂, H₂S, NOₓ, and PM₂.₅, a continuous O₃ analyzer was added to the station in April 2005. Both the NOₓ and the O₃ analyzers were supplied by Environment Canada (Yellowknife office).

HYDROGEN SULPHIDE (H₂S)

The data collected in 2005 continues to indicate very low H₂S concentrations in Inuvik – essentially non-detectable. Most of the readings are less than 1µg/m³, which is below the detectable limits of the instrumentation and within the ‘noise’ range.

There were no exceedances of the Alberta Guidelines and the maximum recorded 1-hour average was 6µg/m³.

SULPHUR DIOXIDE (SO₂)

The SO₂ concentrations measured in 2005 were very low and similar to last year’s results, with no exceedances of the NWT standards. The overall average was 3µg/m³ and the maximum 1-hour average was 14µg/m³.

Figure 15 shows the monthly averages and maximum hourly concentrations for 2005.

NITROGEN OXIDES (NOₓ)

As discussed in the Yellowknife section of the report, the focus of NOₓ monitoring is on the NO₂ portion in determining air quality, although NO is certainly of interest for
other reasons (e.g. assessment of secondary pollutant formation). The data collected in Inuvik in 2005 shows that there were no exceedances of the 1-hour and 24-hour national standards for NO₂. The maximum 1-hour average was 88µg/m³ and the annual average was 4µg/m³.

Figure 16:

![2005 Inuvik Nitrogen Dioxide](image)

2005 Inuvik Nitrogen Dioxide

(µg/m³)

The February maximum 1-hour average was the direct result of a winter inversion where the average temperature and wind speed for that hour were -28°C and 0.4 meters per second respectively. The 2004 maximum 1-hour average also occurred during the winter under the same conditions. Meteorological data collected over the last three winters has shown that Inuvik is prone to winter inversions and experiences more inversion days than the other three regions. It is not uncommon in the middle of winter to see consecutive days of extremely cold temperatures accompanied with very low wind speeds (calms), reducing dispersal of pollutants.

Fine Particulate (PM₂.₅)

The 2005 BAM readings produced an annual average was 5µg/m³ - identical to the 2004 annual average. Influence from forest fires resulted in 3 exceedances of the NWT standard for PM₂.₅. All three of these occurred during the month of August and were all related to one forest fire event in Alaska. There was one major forest fire related episode in 2005 as opposed to three in 2004.

Northwest Territories Air Quality Report 2005
Figure 17 shows the monthly averages and daily maximums measured at the Inuvik station in 2005. The maximum 24-hour PM$_{2.5}$ value of 94μg/m3 occurred during the month of August and was directly influenced by the smoke from the Alaskan fires.

GROUND LEVEL OZONE (O$_3$)

The Inuvik station began collecting O$_3$ data in April of 2005. Neither the 1-hour national standard nor the 8-hour NWT standard was exceeded in 2005. The typical ‘spring time maximum’ also occurred at this site and is consistent with the Yellowknife station which also experiences a peak in O$_3$ levels during the spring months.

Figure 18: Figures 18 shows the hourly and 8-hour maximums as well as the monthly averages recorded for 2005.
The focus of the monitoring station in Fort Liard is to gather baseline community air quality information and to track trends and cumulative effects of pollutant sources over time.

In addition to S02, H2S, and PM2.5, a continuous NOx, analyzer was added to the station in March 2005.

HYDROGEN SULPHIDE (H2S)

The maximum hourly H2S concentration in 2005 was 3µg/m³ and the vast majority of readings were less than 2µg/m³, essentially within the detection limits or ‘noise’ range of the analyzer. H2S in Fort Liard is, therefore, considered largely non-detectable.

SULPHUR DIOXIDE (SO2)

The monthly average and maximum hourly concentrations for 2005 are shown in Figure 19. As in previous years, there were no hourly or 24-hour exceedances of the NWT standards in 2005, with a maximum 1-hour average value of 11µg/m³. The monthly averages were very low, with values less than 5µg/m³ - consistent with those measured over the last four years as shown in Figure 20.

Elevated 1-hour SO2 values occur occasionally in Fort Liard, but these are rare isolated peaks and still far below the NWT 1-hour standard. Overall, the data indicates that SO2 concentrations in Fort Liard are within the expected range of background values and there appears to be no impact on community air quality from oil and gas development in the area.
Figure 20 provides a summary by month of 2001-2005 SO₂ data gathered in Fort Liard (the bars represent the overall mean concentration and the line represents the overall maximum 1-hour average).

2001 - 2005 Summary Fort Liard SO₂

![SO₂ Graph](image)

FINE PARTICULATE (PM₂.₅)

2005 data was not available for the months of June and July due to internal damage to the BAM which resulted in the instrument being taken out of service. The problem was caused by the frequent power “brown outs” in Fort Liard and each of the network BAM’s have now been connected to line conditioners to prevent major damage related to power fluctuations. The ‘annual’ PM₂.₅ average concentration based on ten months of data was 3µg/m³. There was one exceedance of the NWT 24-hour standard for PM₂.₅, measured as 32µg/m³. It occurred during the month of August and, like Inuvik, was the direct result of forest fire smoke from fires burning in Alaska.

2005 Fort Liard PM₂.₅

![PM₂.₅ Graph](image)

Figure 21 shows the monthly averages and daily maximums measured at the Fort Liard station in 2005.
NITROGEN OXIDES (NO\textsubscript{x})

The Fort Liard station began collecting NO\textsubscript{x} data in March of 2005 (see Yellowknife section for a discussion on NO\textsubscript{x} and NO\textsubscript{2}). Initial readings of NO\textsubscript{2} appear to be very low, with no exceedances of the 1-hour and 24-hour national standards. The ‘annual’ average is less than 1\(\mu\text{g/m}^3\) and the 1-hour maximum concentration is 23\(\mu\text{g/m}^3\).

Figure 22 shows the 2005 monthly averages and highest hourly concentrations. The maximum NO\textsubscript{2} concentrations occurred during winter, as at the three other network stations. The overall lower levels (compared to the other three stations) are probably reflective of the generally lower emissions due to a smaller community base.
NORMAN WELLS AIR QUALITY

The focus of the monitoring station in Norman Wells is to gather baseline community air quality information and to track trends and cumulative effects of pollutant sources over time.

In addition to SO_2, H_2S, and $\text{PM}_{2.5}$, continuous O_3 and NO_x analyzers were added to the station in 2005.

HYDROGEN SULPHIDE (H_2S)

As in 2004, the 2005 data from the station continued to produce extremely low readings with no exceedances of the Alberta Guidelines. Most hourly averages were essentially zero with a maximum 1-hour concentration of 5μg/m3.

SULPHUR DIOXIDE (SO_2)

The 2005 SO_2 monitoring program produced similar results to the Fort Liard, Yellowknife and Inuvik stations. The 1-hour maximum was 3μg/m3 which was the lowest value recorded in the network. Overall SO_2 concentrations were generally very low (annual average less than 1μg/m3) and no exceedances of the NWT standards occurred.

Figure 23:

![2004-2005 Norman Wells Sulphur Dioxide](image)

Figure 23 shows a comparison of monthly means and 1-hour maximums for 2004 and 2005.
NITROGEN OXIDES (NOx)

The Norman Wells station began collecting NOx data in June of 2005 (see Yellowknife section for a discussion on NOx and NO2). The limited data collected in 2005 shows that there were no exceedances of the 1-hour and 24-hour national standards for NO2. As with the other 3 network stations NO2 levels increase in the winter months. The maximum 1-hour average was 54μg/m³ and the overall average was 1μg/m³.

Figure 24 shows the 2005 monthly averages and highest hourly concentrations.

Fine Particulate (PM2.5)

Figure 25 shows the monthly averages and daily maximums measured at the Norman Wells station in 2005. The forest fires burning in Alaska had the most significant impact on the Norman Wells PM2.5 results compared to the rest of the network. The annual average was 6μg/m³. There were three exceedances of the NWT standard for PM2.5. All of these exceedances occurred in August coinciding with the Alaskan forest fires.

Figure 25:

Northwest Territories Air Quality Report 2005 28
GROUND LEVEL OZONE (O_3)

The Norman Wells station began collecting O_3 data in April of 2005. No exceedences of the 1-hour national standard or the 8-hour NWT standard were observed in 2005. The elevated spring time levels were also evident at this site and are consistent with the Yellowknife and Inuvik stations which also experience a peak in O_3 levels during the spring months.

Figure 25:

Figure 25 shows the hourly and eight hour maximums as well as the monthly averages recorded for 2005.
SNARE RAPIDS ACID DEPOSITION

Since 1989, ENR has operated a Canadian Air and Precipitation Monitoring (CAPMoN) station at the NWT Power Corporation’s Snare Rapids hydro site. This site is located 150 kilometres northwest of Yellowknife. Rain and snow samples are collected on a daily basis and sent to Environment Canada’s CAPMoN laboratory in Toronto for analysis.

Unfortunately, the 2005 acid precipitation results were not available in time for the annual report release date as the data was still undergoing CAPMoN’s quality assurance/quality control checks. The 2005 results will be included in next year’s report.

DARING LAKE SEASONAL PARTICULATE

In summer of 2005, the short-term seasonal particulate monitoring program continued at the NWT Tundra Ecological Research Station located at Daring Lake. The program was a follow up to the PM₁₀ monitoring program undertaken in summer of 2002 and the PM₂.₅ monitoring program in 2003 and 2004. The monitoring program in 2005 continued the focus on the finer portion of particulate PM₂.₅. As in the previous three years, a battery operated Mini-Partisol particulate sampler and solar panel were set up to gather information on background concentrations of particulate in the barren lands. The 2005 sampling program began on June 24th and finished on August 19th. The solar-powered system ran without incident in 2005 and was not affected by any unforeseen “acts of nature” such as lightning strikes as was the case in 2003.

A total of 18 24-hour samples were obtained. The overall concentrations were much lower than last year, ranging from 0 to 3 versus 2 to 42 μg/m³. The 2005 results were typical of background levels and were not influenced by forest fires as was the case in 2004.
APPENDIX A: MONITORING HISTORY

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>Government of the NWT starts monitoring air quality in Yellowknife with the installation of a high-volume air sampler at the Post Office site.</td>
</tr>
<tr>
<td>1989</td>
<td>Monitoring of acid precipitation at the Snare Rapids hydro-electric site begins.</td>
</tr>
<tr>
<td>1992</td>
<td>SO₂ analyzer installed at the City Hall site.</td>
</tr>
<tr>
<td>1997</td>
<td>SO₂ monitoring in N’dilo begins and continues until 2000.</td>
</tr>
<tr>
<td>1998</td>
<td>O₃ analyzer added in Yellowknife to the City Hall site.</td>
</tr>
<tr>
<td>2000</td>
<td>A SO₂ analyzer was installed in the ENR building in Fort Liard in March followed by a H₂S analyzer in October.</td>
</tr>
</tbody>
</table>
| 2002 | Daring Lake summer sampling of PM₁₀ at Daring Lake begins.
| | City Hall SO₂ analyzer relocated to new air monitoring trailer located at Sir John Franklin High School. |
| 2003 | Daring Lake summer sampling of PM₂.₅ begins (The same sampler is used for PM₁₀ and PM₂.₅ monitoring)
| | Air monitoring trailers are installed in Inuvik, Norman Wells and Fort Liard.
| | CO and NOₓ analyzers added to the Yellowknife station as well as a continuous fine particulate sampler (PM₂.₅).
| | Norman Wells station monitors SO₂ and H₂S.
| | Inuvik station monitors SO₂, H₂S, NOₓ, and PM₂.₅.
| | Fort Liard station monitors SO₂ and H₂S. A PM₂.₅ sampler is installed late in the year.
| | The O₃ analyzer that was operating at the City Hall location was relocated to the new Sir John Franklin Yellowknife station.
| | ENR initiates the upgrade of the Data Acquisition System moving to a specialized air monitoring system, which will allow more efficient and quality controlled data collection.
| | PM₂.₅ samplers are installed in Inuvik and Fort Liard.
| | A second high-volume sampler is installed at the Sir John Franklin Yellowknife station. |
| 2004 | PM₂.₅ sampler is installed in Norman Wells. |
APPENDIX B: AIR POLLUTANTS

The NWT air quality monitoring network tracks a number of different air pollutants. With the exception of arsenic and \(\text{H}_2\text{S} \), these pollutants are known as Criteria Air Contaminants (CAC’s). They represent the gases and compounds most often affecting community air quality and targeted by monitoring programs.

Arsenic is monitored in Yellowknife due to its association with metal ore roasting operations in the past and an ongoing concern during remediation work currently being undertaken at the former industrial sites.

\(\text{H}_2\text{S} \) is monitored at the air quality stations in Inuvik, Norman Wells and Fort Liard due to its association with oil and gas development activities.

TOTAL SUSPENDED PARTICULATE (TSP)

Total Suspended Particulate (TSP) is a general term for dust. TSP includes a wide variety of solid and liquid particles found floating in the air, with a size range of approximately 50 micrometers (\(\mu \text{m} \)) in diameter and smaller (a human hair is approximately 100 \(\mu \text{m} \) in diameter). While TSP can have environmental and aesthetic impacts, it is the smaller particles contained within TSP that are of concern from a human health perspective (see Particulate Matter (PM\(_{2.5} \)) and (PM\(_{10} \)) later in section). Road dust, forest fires, mining activities and combustion products from vehicles, heating and electricity generation contribute to TSP levels.

The NWT Ambient Air Quality Standard for TSP is 120\(\mu \text{g} / \text{m}^3 \) over a 24-hour period. The standard for the annual average is 60\(\mu \text{g} / \text{m}^3 \) (geometric mean).

ARSENIC

Arsenic is present in the environment in a variety of forms. The most common form in air is the inorganic compound arsenic trioxide. Natural sources of airborne arsenic include volcanoes and windblown dust from arsenic rich soils, while industrial activities such as smelting and burning of coal account for most of the man-made sources. The vast majority of airborne arsenic is associated with dust and therefore analysis of TSP samples provides a good indication of arsenic concentrations.

There are no NWT standards for arsenic compounds. The World Health Organization (WHO) Air Quality Guidelines, (WHO, 2000), state that inhaling inorganic arsenic compounds can contribute to human development of cancer and there is no safe limit. It is, therefore, important to minimize exposure as much as possible, since the cancer risk increases with exposure to higher concentrations.

As the threshold for arsenic compounds has not been set, it is difficult to determine an acceptable level. Ontario continues to use a 24-hour Guideline of 0.3\(\mu \text{g} / \text{m}^3 \) for total arsenic based on general toxicity, but the World Health Organization (WHO)
suggest that a lifetime risk estimate approach should be used for assessment purposes. The WHO has calculated the following lifetime risk estimates of contracting cancer due to exposure to varying concentrations of arsenic in air:

- 0.066\text{\mu g/m}^3 \text{ results in a theoretical risk of one person in 10,000}
- 0.0066\text{\mu g/m}^3 \text{ results in a theoretical risk of one person in 100,000}
- 0.00066\text{\mu g/m}^3 \text{ results in a theoretical risk of one person in 1,000,000}

In simple terms, the above estimates indicate, for example, that in a population of 10,000 people, a lifetime exposure to an arsenic concentration of 0.066\text{\mu g/m}^3 could theoretically result in one person contracting cancer. The Ontario Guideline provides a useful comparison for assessment of short-term (24-hour) arsenic measurements but the WHO approach is probably more applicable given the longer-term health risks associated with arsenic exposure.

Particulate Matter (PM\textsubscript{2.5} and PM\textsubscript{10})

A sub-portion of TSP, these very small particulates are named for the diameter size of the particles contained within each group – PM\textsubscript{10} contains particles with a diameter of 10 microns (1 millionth of a metre) or less, while PM\textsubscript{2.5} (a sub-portion of PM\textsubscript{10}) contains particles with a diameter of 2.5 microns or less. The significance of these microscopic particles is that they are inhalable and associated with health effects including aggravation of existing pulmonary and cardiovascular disease. Generally, the smaller the particle, the greater the penetration into the lung and the greater the associated health risk.

Sources of inhalable particulates include road dust and wind blown soil, which make up the majority of the PM\textsubscript{10} particles. Particles in the PM\textsubscript{2.5} size range primarily result from combustion of fossil fuels for industrial activities, commercial and residential heating, as well as vehicle emissions, forest fire smoke and chemical reactions between other gases emitted to the air.

The national Canada-wide Standards (CWS) process has set an acceptable limit for PM\textsubscript{2.5} but has not yet established a limit for PM\textsubscript{10}. The CWS 24-hour average acceptable limit for PM\textsubscript{2.5} is 30\text{\mu g/m}^3 and this concentration has been adopted under the NWT Environmental Protection Act as the NWT Ambient Air Quality Standard for PM\textsubscript{2.5}. Several Canadian jurisdictions (e.g. BC, Ontario, Newfoundland & Labrador) have adopted a PM\textsubscript{10} concentration of 50\text{\mu g/m}^3 (24-hour average) as an acceptable limit.

Sulphur Dioxide (SO\textsubscript{2})

SO\textsubscript{2} is a colourless gas, with a pungent odour at elevated concentrations, which can have negative effects on human and environmental health. Certain types of vegetation (especially lichens) are very sensitive to SO\textsubscript{2} impacts. SO\textsubscript{2} also plays a
role in acid deposition and formation of secondary fine particulate through chemical reactions with other pollutants in the air.

There are some natural sources of SO$_2$ in ambient air (forest fires, volcanoes) but human activity is the major source. Emissions of SO$_2$ primarily result from the burning of fossil fuels containing sulphur. Sources include natural gas processing plants, gas plant flares and oil refineries, metal ore smelting, power generating plants and commercial or residential heating.

The NWT Ambient Air Quality Standards for SO$_2$ are 450 µg/m3 (1-hour average), 150 µg/m3 (24-hour average) and 30 µg/m3 (annual average).

HYDROGEN SULPHIDE (H$_2$S)

Hydrogen sulphide (H$_2$S) is a colourless gas with a characteristic rotten egg odour. At high concentrations (parts per million range), it can be toxic, but typical ambient (outdoor) concentrations, even in areas impacted by industrial sources, tend to fall in the parts per billion (ppb) range. However, due to its low odour threshold, the presence of H$_2$S can be offensive and it has been associated with eye irritation and triggering feelings of nausea in sensitive individuals.

Industrial sources include oil and gas extraction, petroleum refining, sewage treatment facilities and pulp and paper mills. Natural sources include sulphur hot springs, swamps and sloughs which release H$_2$S as a by-product of organic decomposition.

There are no NWT standards for H$_2$S. The Alberta Ambient Air Quality Objectives provide an hourly limit of 14µg/m3 (or 10ppb) and a 24-hour limit of 4µg/m3 (or 3ppb), based on avoidance of odour.

NITROGEN OXIDES (NO$_x$)

Nitrogen oxides (NO$_x$) consist of a mixture of nitrogen based gases, primarily nitric oxide (NO) and nitrogen dioxide (NO$_2$). Emissions of both NO and NO$_2$ results from the high temperature combustion of fossil fuels. The predominant emission is NO which then rapidly converts to NO$_2$ through chemical reaction in the atmosphere. NO is a colourless and odourless gas, whereas NO$_2$ is a reddish-brown colour with a pungent, irritating odour. NO$_2$ is considered the more toxic and irritating of the two gases and, at elevated concentrations, is associated with both acute and chronic respiratory effects. Both gases play a role in the atmospheric reactions resulting in acid deposition and secondary pollutant formation (i.e. O$_3$ and fine particulate).

Because of the greater health effects of NO$_2$, development of air quality standards has focused on this gas, rather than NO or total NO$_x$. There are no NWT standards for NO$_2$ but the national standards provide values of 400µg/m3 (1-hour average), 200µg/m3 (24-hour average) and 60µg/m3 (annual average).
GROUND LEVEL OZONE (O₃)

Ground level ozone (O₃) should not be confused with stratospheric O₃ which occurs at much higher elevations and forms a shield which protects life on the planet from the sun’s harmful ultraviolet radiation. The gas is the same but at ground level O₃ is regarded as undesirable due to its association with a variety of human health concerns, environmental impacts and property damage. O₃ is a highly reactive gas and is defined as a secondary pollutant. It is not emitted in large quantities from any source but is formed through a series of complex chemical reactions involving other pollutants called precursors (e.g. NOₓ and volatile organic compounds or VOCs) in the presence of sunlight.

The national standards provide a Maximum Acceptable Level of 160μg/m³ for O₃ based on a 1-hour average. The Canada-wide Standards (CWS) process has also set an acceptable limit of 65ppb or 127μg/m³ based on an 8-hour average. The CWS 8-hour limit has been adopted under the NWT Environmental Protection Act as the NWT Ambient Air Quality Standard for O₃.

CARBON MONOXIDE (CO)

Carbon monoxide (CO) is a colourless, odourless and tasteless gas produced by the incomplete combustion of fuels containing carbon. The primary source is vehicle exhaust especially in cities with heavy traffic congestion. Other sources include industrial processes and fuel combustion for building heating. One natural source is wildfires.

CO affects humans and animals by interfering with the ability of the blood to transport oxygen around the body.

There are no NWT standards for CO but the most stringent national standards provide a value of 15mg/m³ (1-hour average) and 6mg/m³ (8-hour average). CO values are reported in mg/m³ as opposed to other gaseous pollutants which are reported in μg/m³.

ACID DEPOSITION

Acidity in precipitation is measured in pH units on a scale of 0 to 14. A value of 7 indicates neutral, values less than 7 indicate acidic conditions and values greater than 7 indicate alkaline conditions. Even clean precipitation is slightly acidic—around pH5.6—due to the presence of naturally occurring concentrations of carbon dioxide, and minor amounts of sulphate and nitrate ions. The introduction of sulphur dioxide and nitrogen oxide emissions from combustion of fossil fuels for industrial, commercial and individual activities can result in an increase in acidic compounds in the atmosphere—often in areas far removed from the original emission sources. The removal of these sulphur and nitrogen compounds through atmospheric washout is
reflected in the increased acidity (lower pH values) of precipitation. Calcium and magnesium ions—mostly from natural sources—act to neutralize acidity in precipitation.

Generally, precipitation with a pH value of 5.0 or less is termed ‘acidic’. However, assessment of acid precipitation is usually based on deposition to an area over a specified time period (e.g. kilograms per hectare per year, kg/ha/yr) rather than review of specific precipitation event parameters. Also, the degree of impact to a particular environment is influenced by its ‘buffering’ capacity or ability to tolerate the acidic inputs. Therefore, determination of acceptable limits usually requires a range of values to reflect the differing tolerances of various areas.